Sunday, February 19, 2017

GCD and LCM of two integers using Euclids' Algorithm in Java


A simple program that I wrote using Java to solve the GCD and LCM of a given number of the user.

Add me at Facebook my address is jakerpomperada@gmail.com and jakerpomperada@yahoo.com

My email address are the following jakerpomperada@gmail.com and jakerpomperada@yahoo.com

My mobile number here in the Philippines is 09173084360.




Sample Program Output


Program Listing

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package gcd_lcm;


import java.util.Scanner;

/**
 *
 * @authors Jake R. Pomperada and  Jacob Samuel F. Pomperada
 * Date : February 19, 2017  Sunday
 * Language : Java
 * IDE     : NetBeans
 */
public class gcd_lcm {

    /**
     * @param args the command line arguments
     */
    
    void display()
    {
       int num1=0, num2=0, gcd=0, lcm=0, remainder=0, numerator=0, denominator=0;

        Scanner s = new Scanner(System.in);
     
        System.out.println();
        System.out.println("===  GCD and LCM of two integers using Euclids' Algorithm in Java === ");
        System.out.println();
      
         System.out.print("Enter First Value : ");
         num1 = s.nextInt();
            
         System.out.print("Enter Second Value : ");
         num2 = s.nextInt();
                 
        if (num1 > num2)

        {
        numerator = num1;
        denominator = num2;
        }
    else

       {
        numerator = num2;
        denominator = num1;
       }

    remainder = numerator % denominator;

    while (remainder != 0)

    {

        numerator   = denominator;

        denominator = remainder;

        remainder   = numerator % denominator;

    }

    gcd = denominator;

    lcm = num1 * num2 / gcd;
  
        System.out.println();
        System.out.println("===== DISPLAY RESULTS ======");
        System.out.println();
        System.out.println("The GCD of " + num1 + " and "
                           + num2 + " is " + gcd + ".");

        System.out.println("The LCM of " + num1 + " and "
                           + num2 + " is " + lcm + ".");

        System.out.println();
        System.out.println("===== END OF PROGRAM ======");
        System.out.println();
    }
    
    public static void main(String[] args)
      {
        // TODO code application logic here
      gcd_lcm demo  = new gcd_lcm();
      demo.display();
            
    }
    
}




No comments:

Post a Comment